
IT4305: Rapid Software
Development

BIT – 2nd Year

Semester 4

IT4305 - Rapid Software Development

UCSC - 2015 2

Learning Outcome

After successful completion of this course
students will be able to:

– Describe Agile principles

– Explain how Agile principles differ from
traditional, plan-driven, sequential product
development

IT4305 - Rapid Software Development

UCSC - 2015 3

Outline of Syllabus
• Introduction

• Variability and Uncertainty

• Prediction and Adaptation

• Validated Learning

• Work in Process (WIP)

• Progress

• Performance

• Comparison Summary of Plan-Driven and Agile
Principles

IT4305 - Rapid Software Development

UCSC - 2015 4

References
1. Essential Scrum Practical Guide to the Most Popular

Agile Process by Kenneth S. Rubin.

2. The Art of Agile Development by James Shore and
Shane Warden

3. Agile and Iterative Development: A Manager's Guide by
Craig Larman, Agile Software development series,
Alistair Cockburn and Jim Highsmith, Series Editors

4. http://agilemanifesto.org

5. https://msdn.microsoft.com/en-
us/library/hh533841.aspx

IT4305 - Rapid Software Development

UCSC - 2015 5

IT4305: Rapid Software Development

Agile Principles

Duration: 03 hours

IT4305 - Rapid Software Development

UCSC - 2015 6

Learning Objectives

• Describe Agile principles

• Explain how Agile principles differ from
traditional, plan-driven, sequential product
development

Detailed Syllabus
2.1 Introduction

2.2 Variability and Uncertainty

2.3 Prediction and Adaptation

2.4 Validated Learning

2.5 Work in Process (WIP)

2.6 Progress

2.7 Performance

2.8 Comparison Summary of Plan-Driven and Agile
Principles

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 7

2.1 INTRODUCTION

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 8

• Agile principles

– Agile principles make organizations robust & antifragile

– Embracing Agile principles makes the development
process and organization robust and at times antifragile to
the disorder of uncertain events, avoiding harm and
reaping benefits of uncertainty

– These principles are organized into several categories

2.2 VARIABILITY AND
UNCERTAINTY

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 10

• Four Principles under Variability and
Uncertainty

1. Embrace helpful variability.

2. Employ iterative and incremental development.

3. Leverage variability through inspection,
adaptation, and transparency.

4. Reduce all forms of uncertainty simultaneously.

Refer to the Ref.1 pg. 32

2.2.1 Embrace helpful variability
Plan-driven development Agile Development

• treat product development like
manufacturing—they shun variability

• and encourage conformance to a
defined process.

• The problem is that product
development is not at all like product
manufacturing. In manufacturing our
goal is to take a fixed set of
requirements and follow a sequential
set of well-understood steps to
manufacture a finished product that is
the every time

In product development, the goal is
to create the unique single instance
of the product not to manufacture
the product
Some amount of variability is
necessary to produce a different
product each time

Fig. 1 Defined Process

Refer to Ref.1 pg.32

2.2.2 Employ iterative and incremental
development

Plan-driven development Agile Development

• assumes that we will get things
right up front

• and that most or all of the
product pieces will come
together late in the effort

iterative development is a planned rework strategy
use multiple passes to improve what we are building
so that we can converge on a good solution.
start by creating a prototype to acquire important
knowledge about a poorly known piece of the
product
an excellent way to improve the product as it is
being developed.

incremental development
“Build some of it before you build all of it.”
break the product into smaller pieces so that we can
build some of it, learn how each piece is to survive
in the environment
The biggest drawback to incremental development
is that by building in pieces, we risk missing the big
picture (ex. we see the trees but not the forest))

Refer to Ref.1 pg.33-34

• Employ iterative and incremental development

• Usage of “iterative and incremental development” in
Scrum

• Sprints : series of time boxed iterations

• During each sprint we perform all of the activities
necessary to create a working product increment

Refer to Ref.1 pg.33-34

• No need to work on a phase at a time; have to work on a feature at a
time.

• By the end of a sprint we have created a valuable product increment
• That increment includes or is integrated and tested with any

previously developed features; otherwise, it is not considered done
• At the end of the sprint, we can get feedback on the newly completed

features within the context of already completed features.
• After receiving feedback on the sprint results, we can choose different

features to work on in the next sprint or alter the process we will use
to build the next set of features.

• Sometimes we can schedule rework for a future sprint
• Scrum does not require that we predetermine a set number of

iterations
• The continuous stream of feedback
• will guide us to do the appropriate and economically sensible number

of iterations

Refer to Ref.1 pg.33-34

Plan-driven development Agile Development

• assumes little or no output variability.
• It follows a well-defined set of steps

and uses only small amounts of
feedback late in the process.

• In Scrum, we inspect and adapt
not only what we are building but
also how we are building it

• To do this well, we rely on
transparency
• all of the information that is

important to producing a
product must be available to
the people involved in
creating the product

• Transparency makes inspection
possible, which is needed for
adaptation

• It leads to more communication
and it establishes trust

2.2.3 Leverage variability through
inspection, adaptation, and transparency

Refer to Ref.1 pg.35

Refer to Ref.1 pg.36

2.2.3 Leverage variability through
inspection, adaptation, and transparency

2.2.4 Reduce all forms of uncertainty
simultaneously
• Developing new products is a complex endeavor with a high degree of

uncertainty

– End uncertainty (what uncertainty)—uncertainty surrounding the features of the
final product

– Means uncertainty (how uncertainty)—uncertainty surrounding the process and
technologies used to develop a product

– there might also be customer uncertainty (who uncertainty)
Plan-driven development Agile Development

• focuses first on eliminating all end
uncertainty by fully defining up front what is to
be built, and only then addressing means
uncertainty.

• focuses on simultaneously reducing all
uncertainties (end, means, customer,
and so on).
• Simultaneously addressing

multiple types of uncertainty is
facilitated by iterative and
incremental development and
guided by constant inspection,
adaptation, and transparency.
• to identify and learn about

the unknown unknownsRefer to Ref.1 pg.36-37

2.3 PREDICTION AND ADAPTION

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 19

• When using Scrum, constantly balance the desire for
prediction with the need for adaptation

• Five agile principles related Prediction and Adaption

– Keep options open.

– Accept that you can’t get it right up front.

– Favor an adaptive, exploratory approach.

– Embrace change in an economically sensible way.

– Balance predictive up-front work with adaptive just-in-
time work.

Refer to Ref.1 pg.37-38

2.3.1 Keep Options Open
Plan-driven development Agile Development

• requires that important decisions in
areas like requirements or design be
made, reviewed, and approved within
their respective phases

• But Scrum favors a strategy of
keeping options open
• referred to as the last

responsible moment (LRM) -
we delay commitment and
do not make important and
irreversible decisions until
the last responsible moment

• When dealing with
important or irreversible
decisions, if we decide too
early and are wrong

Refer to Ref.1 pg.37 - 38

2.3.2 Accept That You Can’t Get It Right Up
Front

Plan-driven development Agile Development

• mandates full requirements
and a complete plan; they
also assume that we can
“get it right” up front.

• The reality is that it is very
unlikely that we can get all
of the requirements, or the
detailed plans based on
those requirements,
correct up front.

• What’s worse is that when
the requirements do
change, we have to modify
the baseline requirements
and plans to match the
current reality

• acknowledge that we can’t get all of the requirements or
the plans right up front

• With Scrum, we still produce some requirements and plans
up front, but just sufficiently, and with the assumption that
we will fill in the details of those requirements and plans as
we learn more about the product

Refer to Ref.1 pg.38-39

2.3.3 Favor an Adaptive, Exploratory
Approach

Plan-driven development Agile Development

• focuses on using (or exploiting) what is
currently known and predicting what isn’t
known.

• Scrum favors a more adaptive, trial-and
error approach based on appropriate use of
exploration
• Exploration refers to times when we

choose to gain knowledge by doing
some activity, such as building a
prototype, creating a proof of concept,
performing a study, or conducting an
experiment. i.e. when faced with
uncertainty, we buy information by
exploring.

• feedback from our action will help us
determine if and when we need further
exploration.

Refer to Ref.1 pg.40

– we assume that change is the norm.

– Goal is to keep the cost-of-change curve flat (Fig 1)

for as long as possible making it economically

sensible to embrace even late change

– can achieve that goal by managing the amount of work in
process and the

– flow of that work so that the cost of change when using
Scrum is less affected by time than it is with sequential
projects.

Refer to Ref.1 pg.40-41

2.3.4 Embrace change in an
economically sensible way

2.3.4 Embrace change in an economically
sensible way

Plan-driven
development

Agile Development

• as we have all
learned, is
substantially more
expensive late than it
is early on

• seek to carefully
control and minimize
any changing
requirements or
designs by improving
the accuracy of the
predictions about
what the system
needs to do or how it
is supposed to do it.

• we produce many work
products in a just-in-time fashion,
avoiding the creation of potentially
unnecessary artifacts.
• When developing with Scrum,
there does come a time when the
cost of change will no longer be
proportional to the size of the
request, but this point in time
the inflection point on the Scrum
curve occurs later.

Refer to Ref.1 pg.40-43

2.3.5 Balance predictive up-front work
with adaptive just-in-time work

Plan-driven development Agile Development

• detailed up-front requirements and
planning are critical and should be
completed before moving on to later stages.

• up-front work should be helpful without
being excessive.

• Scrum, acknowledges that it is not possible
to get requirements and plans precisely
right up front.

• Scrum is about finding balance between
predictive up-front work and adaptive just-
in-time work

Refer to Ref.1 pg.44

2.3.5 Balance predictive up-front work
with adaptive just-in-time work

– the balance point should be set in an economically
sensible way to maximize the amount of ongoing
adaptation based on fast feedback and minimize the
amount of up-front prediction, while still meeting
compliance, regulatory, and/or corporate objectives.
• balance is achieved is driven in part by the type of product being built, the

degree of uncertainty that exists in both what we want to build and how
we want to build it and the constraints placed on the development.

• Being overly predictive would require us to make many assumptions in
the presence of great uncertainty. Being overly adaptive could cause us to
live in a state of constant change, making our work feel inefficient and
chaotic.

• To rapidly develop innovative products we need to operate in a space
where adaptability is counterbalanced by just enough prediction to keep
us from sliding into chaos.

– The Scrum framework operates well at this balance point of order and chaos.

Refer to Ref.1 pg.44

2.4 VALIDATED LEARNING

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 28

• Can acquire validated learning when we obtain knowledge
that confirms or refutes an assumption that we have made.
– Three agile principles related to this topic:

• Validate important assumptions fast.

• Leverage multiple concurrent learning loops.

• Organize workflow for fast feedback.

2.4.1 Validate important assumptions fast

• Assumptions represent a significant development risk.

Plan-driven development Agile Development

• much more tolerant of long-lived
assumptions than Scrum. Using plan-
driven development, we produce
extensive up-front requirements and plans
that likely embed many important
assumptions, ones that won’t be validated
until a much later phase of development.

• try to minimize the number of important
assumptions that exist at any time.

• don’t want to let important assumptions
exist without validation for very long

• As a result, if we make a fundamentally
bad assumption when using Scrum, we will
likely discover our mistake quickly and
have a chance to recover from it.

Refer to Ref.1 pg.44-46

2.4.2 Leverage multiple concurrent
learning loops

Learning Loop
pattern

Plan-driven development Agile Development

• There is learning that occurs when using
sequential development. However, an
important form of learning happens only
after features have been built, integrated,
and tested, which means considerable
learning occurs toward the end of the effort.

• Late learning provides reduced benefits
because there may be insufficient time to
leverage the learning or the cost to leverage
it might be too high

• Scrum identifies and exploits feedback loops
to increase learning

• Recurring pattern in this style of product
development is to make an assumption (or
set a goal),
• build something (perform some

activities),
• get feedback on what we built,
• use that feedback to inspect what we

did relative to what we assumed.

• Make adaptations to the product,
process, and/or our beliefs based on
what we learned
• Ex: pair programming (feedback in

seconds)
• test-driven development

(feedback in minutes)
Refer to Ref.1 pg.45

2.4.3 Organize workflow for fast
feedback

Component integration

Plan-driven development Agile Development

tolerant of late learning, so fast feedback is not
a focus.

• organize the flow of work to move through
the learning loop in and get to feedback as
quickly as possible. In doing so, we ensure
that feedback-generating activities occur in
close time proximity to the original work.
• Ex: component integration and testing

• At some time these components
have to be integrated and tested
before making a shippable
product. Until we try to do the
integration, we really don’t know
whether we have developed the
components correctly. Attempting
the integration will provide critical
feedback on the component
development work.

Refer to Ref.1 pg.46

2.5 WORK IN PROCESS (WIP)

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 32

– work that has been started but not yet finished.

– During product development WIP must be
recognized and properly managed.

– agile principles related to this topic:

• Use economically sensible batch sizes.

• Recognize inventory and manage it for good flow.

• Focus on idle work, not idle workers.

• Consider cost of delay.

Refer to Ref.1. pg.48 - 52

Use economically
sensible batch sizes

Plan-Driven
Development

» it is preferable
to batch up all
of one

type of work and
perform it in a single
phase.

Refer to Ref.1 pg.49

Recognize Inventory and Manage It for Good Flow

• keep some inventory on hand but use a healthy dose of just-in-
time inventory management

• requirements are just one form of inventory that exists in
product development exists in product development

• too many requirements, we will likely experience inventory
waste when requirements change

Focus on Idle Work, Not Idle Workers
– idle work :we are blocked waiting on another team to do something
– Idle workers : people who have available capacity to do more work because they are

not currently 100% utilized
– In plan-driven development : focus more on eliminating the waste
– of idle workers than on the waste of idle work.
– The idle work (delayed work) grows exponentially once we get into the high levels of

utilization.
– acutely aware that finding the bottlenecks in the flow of work and focusing our efforts

on eliminating them is a far more economically sensible activity than trying to keep
everyone 100% busy

To read more on this and to read an
example : go to Ref 1 : pg 51

2.4.4.4 Consider Cost of Delay

• financial cost associated with delaying work or delaying
achievement of a milestone

To read more on this and to read an
example : go to Ref 1 : pg 51

2.6 PROGRESS

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 37

measure progress by what we have delivered and validated, not
by how we are proceeding according to the predefined plan or
how far we are into a particular phase or stage of development.

Three agile principles;
– Adapt to real-time information and replan.

– Measure progress by validating working assets.

– Focus on value-centric delivery.

2.6.1 Adapt to Real-Time Information and Replan

Plan-driven development Agile Development

• the plan is the authoritative source on
how and when work should occur. As
such, conformance to the plan is
expected

• goal is to rapidly replan and adapt
to the stream of economically
important information that is
continuously arriving during the
development effort

Refer to Ref.1. pg.54-55

2.6.2 Measure progress by validating
working assets

Plan-driven development Agile Development

• effort is demonstrated by completing a
phase and being permitted to enter the
next phase. As a result, if each phase
starts and completes as expected, the
product development effort might seem
to be progressing quite well.

• In the end, the product we created in full
accordance with the plan might deliver far
less customer value than anticipated.

• measure progress by building working,
validated assets that deliver value and
that can be used to validate important
assumptions.

• gives us the feedback to know what the
right next step is.

• It’s not about how much work we start;
it’s all about what customer-valuable work
we finish

Refer to Ref 1 : pg 54

2.6.3 Focus on value-centric delivery
Plan-driven development Agile Development

• focuses on diligently following the process.
By its very structure, the integration and
delivery of features during sequential
development happen at the end of the
effort

• With this approach there is a risk that we
will run out of resources (time or money)
before we deliver all of the important value
to our customers.

• a customer-value-centric form of
development.

• based on a prioritized, incremental model of
delivery in which the highest-value features
are continuously built and delivered in the
next iteration. As a result, customers get a
continuous flow of high-value features
sooner.

• value is generated by delivering working
assets to customers, by validating important
assumptions, or by acquiring valuable
knowledge

• the intermediate artifacts provide no
perceived customer value and are merely a
means to an end if they themselves cannot
be used to generate important feedback or
acquire important knowledge

Deliver high-value features sooner Refer to Ref 1 : pg 55

2.7 PERFORMANCE

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 41

• Agile Principles related to this
– Go fast but never hurry.

– Build in quality.

– Employ minimally sufficient ceremony.

2.7.1 Go fast but never hurry

Plan-driven development Agile Development

• Plan-driven development believes that
if we follow the plan and do things
right the first time, we’ll avoid costly
and time-consuming rework.

• Moving from step to step quickly is of
course desirable, but it isn’t a principal
goal.

• one core goal is to be nimble,
adaptable, and speedy. By going fast,
we deliver fast, we get feedback fast,
and we get value into the hands of our
customers sooner. Learning and
reacting quickly allow us to generate
revenue and/or reduce costs sooner.

Refer to Ref.1. pg.56-57

2.7.2 Build in quality
Plan-driven development Agile Development

• the belief is that through careful,
sequential performance of work we get a
high-quality product.

• we can’t actually verify this quality until
we do the testing of the integrated
product, which occurs during a late phase
of the process.

• If testing should indicate that the quality is
lacking, we then must enter the costly
test-and-fix phase in an attempt to test
quality in. Also, because a different team
frequently works on each phase, the
testing team is often viewed as owning the
quality of the result

• quality isn’t something a testing team
“tests in” at the end; it is something that a
cross-functional Scrum team owns and
continuously builds in and verifies every
sprint

• Each increment of value that is created is
completed to a high level of confidence
and has the potential to be put into
production or shipped to customers

• the need for any significant late testing to
tack on quality is substantially reduced

Refer to Ref 1 : pg 56

2.7.3 Employ minimally sufficient
ceremony

Plan-driven development Agile Development

• tend to be high-ceremony,
document-centric, process-heavy
approaches.

• goal is to eliminate unnecessary formality.
Therefore, we set the ceremonial bar at a low
level, one that is minimally sufficient or good
enough.

• No dead documents

Ceremony scale

Refer to Ref 1 : pg 57

Summary

IT4305 - Rapid Software Development

UCSC - 2015 46

IT4305 - Rapid Software Development

UCSC - 2015 47

IT4305 - Rapid Software Development

UCSC - 2015 48

