
IT4305: Rapid Software
Development

BIT – 2nd Year
Semester 4

IT4305 - Rapid Software Development

UCSC - 2015 2

Learning Outcome
After successful completion of this course
students will be able to:
– Obtain a firm foundation on Agile concepts and

methodologies.
– Acquire understanding of the practices and

application of Agile practices Scrum and XP
– Learn how to apply the Agile framework in

software Development Projects

IT4305 - Rapid Software Development

UCSC - 2015 3

Outline of Syllabus
1. Introduction to Agile Software Development
2. Agile Principles
3. Introduction to Scrum
4. Core Concepts in Scrum
5. Scrum Roles
6. Scrum Planning
7. Sprinting
8. Alternative Approaches to Agile Software

Development

IT4305 - Rapid Software Development

UCSC - 2015 4

References
1. Essential Scrum Practical Guide to the Most Popular

Agile Process by Kenneth S. Rubin.
2. The Art of Agile Development by James Shore and

Shane Warden
3. Agile and Iterative Development: A Manager's Guide by

Craig Larman, Agile Software development series,
Alistair Cockburn and Jim Highsmith, Series Editors

4. http://agilemanifesto.org
5. https://msdn.microsoft.com/en-

us/library/hh533841.aspx

http://agilemanifesto.org
https://msdn.microsoft.com/en-

IT4305 - Rapid Software Development

UCSC - 2015 5

IT4305: Rapid Software Development

Extreme Programming, an agile
software development process

Duration: 16 hours

IT4305 - Rapid Software Development

UCSC - 2015 6

Learning Outcome
– Explain the XP life cycle.
– Understands the XP team features.
– Explain pair programming and its usage.
– Understands Energized Work.
– Define Informative Workspace, Root Cause

Analysis and Retrospectives.
– Describe practices that help a team and its

stakeholders collaborate efficiently and effectively.
– Practice Coding standards.

IT4305 - Rapid Software Development

UCSC - 2015 7

Learning Outcome Cont…
– Practice Iteration demos and Reporting.
– Describe the ways that can be used to leverage

the release.
– Discuss Version Controlling, Continuous

integration, Collective code ownership and
documentation.

– Define Release Planning and Planning Game.
– Discuss Risk Management, Iteration Planning and

Slack.
– Describe Stories and Estimating.

IT4305 - Rapid Software Development

UCSC - 2015 8

Learning Outcome Cont…
– Describe Incremental Requirements.
– Explain and understand application of Test Driven

Development.
– Understand Refactoring.
– Understand Incremental Design and Architecture.
– Understand Performance Optimization and

Exploratory Testing.

Detailed Syllabus
8.1 Introduction to Extreme Programming (XP)
8.2 XP Practices
8.3 Collaboration in XP
8.4 Product Releasing in XP
8.5 Planning Process in XP
8.6 Product Development in XP

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 9

8.1: INTRODUCTION TO EXTREME
PROGRAMMING XP

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 10

8.1: Introduction to Extreme Programming
XP

• 8.1.1 Introduction
• 8.1.2 Introduction to XP Lifecycle
• 8.1.3 The XP Team

– 8.1.3.1 The Whole Team
– 8.1.3.2 On-Site Customers
– 8.1.3.3 Programmers
– 8.1.3.4 Testers
– 8.1.3.5 Coaches
– 8.1.3.6 Other Team Members
– 8.1.3.7 The Project Community
– 8.1.3.8 Filling Roles
– 8.1.3.9 Team Size

8.1.1 Introduction
• Extreme Programming eliminates

– analysis, design, and testing phases, along with their associated
documentation.

– XP teams perform
• significant analysis, design, testing, and coding every day

– High-bandwidth communication, cross-functional teams, and
practices tuned for iterative and incremental work.

– Short, timeboxed iterations provide structure, and the team
produces potentially shippable software at the end of each iteration.

– Each iteration starts with a brief planning session and ends with a
product demo and retrospective.

8.1.1 Introduction

Refer to Ref.2 pg.15-17 for a scenario

8.1.2 Introduction to XP Lifecycle
• can eliminate

– Requirements
– Design
– Testing phases
– Formal documents that go with them

• XP team produces deployable software
every week
• XP does it by working in

iterations: week-long
incrementsof work.

Refer to Ref:2 Pg.18-21

8.1.2 Introduction to XP Lifecycle
• Every week, the team does a bit of

– release planning
– Design
– Coding
– Testing
– They work on stories:

• very small features
• or parts of features, that

Refer to Ref:2 Pg.18-21

8.1.2 Introduction to XP Lifecycle
Cont..

• Every week, the team commits to delivering four to
ten stories.

• Throughout the week, they work on all phases of
development for each story.

• At the end of the week, they deploy their software
for internal review.

Refer to Ref:2 Pg.18-21

8.1.2 Introduction to XP Lifecycle -
Planning

• Every XP team includes several business experts
• on-site customers

– who are responsible for making business decisions.
– point the project in the right direction by clarifying the

project vision, creating stories, constructing a release
plan, and managing risks.

• Programmers
– provide estimates and suggestions, which are blended

with customer priorities in a process called the
planning game.

Refer to Ref:2 Pg.19

8.1.2 Introduction to XP Lifecycle -
Planning Cont…

• customers
– continue to review and improve the vision and the

release plan to account for new opportunities and
unexpected events.

• The team
– creates a detailed plan for the upcoming week at the

beginning of each iteration.
– touches base every day in a brief stand-up meeting,
– its informative workspace keeps everyone informed

about the project status.

Refer to Ref:2 Pg.19

8.1.2 Introduction to XP Lifecycle -
Analysis

• on-site customers
– Rather than using an upfront analysis phase to define requirements sit

with the team full-time.
– may or may not be real customers depending on the type of project
– but they are the people best qualified to determine what the software

should do.
– are responsible for figuring out the requirements for the software.
– When programmers need information, they simply ask. Customers are

responsible for organizing their work so they are ready when
programmers ask for information.

– They figure out the general requirements for a story before the
programmers estimate it

– formalize tricky or difficult to understand requirements with the
assistance of testers, by creating customer tests:

Refer to Ref:2 Pg.19

8.1.2 Introduction to XP Lifecycle -
Analysis Cont…
• Customers and testers

– create the customer tests for a story around the same time that
programmers implement the story.

• For the UI,
– customers work with the team to create sketches of the

application screens.
– Some teams include an interaction designer who’s responsible for

the application’s UI.

Refer to Ref:2 Pg.19

8.1.2 Introduction to XP Lifecycle - Design
and Coding

• XP uses incremental design and architecture to continuously
create and improve the design in

• small steps.
• test-driven development (TDD),

– an activity that inextricably weaves together testing, coding,
design, and architecture.

– To support this process, programmers work in pairs,
– ensures that one person in each pair always has time to think

about larger design issues.
• use a version control system for configuration management

and maintain their own automated build.

Refer to Ref:2 Pg.20

8.1.2 Introduction to XP Lifecycle - Design
and Coding Cont…

• Programmers integrate their code every few hours and ensure
that every integration is technically capable of deployment.

• programmers also maintain coding standards and share
ownership of the code.

• The team shares a joint aesthetic for the code.

• Everyone is expected to fix problems in the code regardless of
who wrote it.

Refer to Ref:2 Pg.20

8.1.2 Introduction to XP Lifecycle -
Testing

• Each member of the team—programmers, customers, and
testers—makes his own contribution to software quality.

• produce a handful of bugs per month in completed work.

• TDD produces automated unit and integration tests.

• Customers review work in progress to ensure that the UI
works the way they expect.

• They also produce examples for programmers to automate
that provide examples of tricky business rules.

Refer to Ref:2 Pg.20

8.1.2 Introduction to XP Lifecycle -
Testing Cont…

• When the testers find a bug, the team conducts root-cause
analysis and considers how to improve their process to
prevent similar bugs from occurring in the future.

• Testers explore the nonfunctional characteristics, such as
performance and stability.

• When bugs are found, programmers create automated tests
to show that the bugs have been resolved.

• The team supports their quality efforts through pair
programming, energized work, and iteration slack.

Refer to Ref:2 Pg.20

8.1.2 Introduction to XP Lifecycle -
Deployment
• XP teams keep their software ready to deploy at the end of

any iteration.
• They deploy the software to internal stakeholders every week

in preparation for the weekly iteration demo.
• Deployment to real customers is scheduled according to

business needs.
• when the project ends, the team may hand off maintenance

duties to another team.
• In this case, the team creates documentation and provides

training as necessary during its last few weeks.

Refer to Ref:2 Pg.21

8.1.3 The XP Team
• Team software development

• How to design and program the software (programmers,
designers, and architects)

• Why the software is important (product manager)
• The rules the software should follow (domain experts)
• How the software should behave (interaction designers)
• How the user interface should look (graphic designers)
• Where defects are likely to hide (testers)
• How to interact with the rest of the company (project

manager)
• Where to improve work habits (coach)

• XP acknowledges this reality by creating cross functional
teams composed of diverse people

Refer to Ref:2 pg.22-24 to a scenario

8.1.3 The XP Team - The Whole Team
• XP teams sit together in an open workspace.
• At the beginning of each iteration, the team meets for a series of

activities:
– an iteration demo
– a retrospective
– iteration planning.

• These meeting typically take two to four hours in total.
• The team also meets for daily stand-up meetings, which usually

take five to ten minutes each.
• Everyone on the team plans his own work : it’s as informal as

somebody standing up and announcing across the shared
workspace that he would like to discuss an issue.

• This self-organization is a hallmark of agile teams.
Refer to Ref.2 pg.28

8.1.3 The XP Team – On-Site
Customers

• responsible for defining the software the team builds.
• most important activity is release planning.
• Customers need to evangelize the project’s vision;
• identify features and stories determine how to group

features into small, frequent releases; manage risks; create
an achievable plan by coordinating with programmers and
playing the planning game.

• responsible for refining their plans by soliciting feedback
from real customers and other stakeholders.
– One of the venues for this feedback is the weekly iteration

demo

Refer to Ref.2 pg.29

8.1.3 The XP Team – On-Site
Customers Cont…

• responsible for providing programmers with requirements
details upon request.

• Customers themselves act as living requirements documents,
researching information in time for programmer use and
providing it as needed.
– XP uses requirements documents only as memory aids for

customers.
• Help communicate requirements by creating mock-ups,

reviewing work in progress, Creating detailed customer tests
that clarify complex business rules.

Refer to Ref.2 pg.29

8.1.3 The XP Team – On-Site
Customers Cont…

• Typically, product managers, domain experts, interaction
designers, and business analysts play the role of the on-site
customer.

• One of the most difficult aspects of creating a cross-functional
team is finding people qualified and willing to be on-site
customers.

• A great team will produce technically excellent software without
on-site customers

• Customer involvement makes a huge difference in product success

NOTE: Include exactly one product manager and enough other on-
site customers for them to stay one step ahead of the
programmers. As a rule of thumb, start with two on-site customers
(including the product manager) for every three programmers.

Refer to Ref.2 pg.29

8.1.3 The XP Team- Programmers
• Responsible for finding the most effective way of delivering

the stories in the plan.
• Provide effort estimates, suggest alternatives, and help

customers create an achievable plan by playing the planning
game.

• Spend most of their time in pair programming.
• Using test-driven development, they write tests, implement

code, refactor, and incrementally design and architect the
application.

• Have to have the awareness of technical debt and its impact
on development time and future maintenance costs.

Refer to Ref.2 pg.33

8.1.3 The XP Team- Programmers
Cont…

• Maintain a ten-minute build that can build a complete
release package at any time

• Use version control and practice continuous integration,
keeping all but the last few hours’ work integrated and
passing its tests

• At the beginning of the project establish coding standards
• Have the right and the responsibility to fix any problem they

see

Refer to Ref.2 pg.33

8.1.3 The XP Team - Testers

• Help customers identify holes in the requirements and assist
in customer testing.

• Use exploratory testing to help the team identify whether it is
successfully preventing bugs from reaching finished code.

• Provide information about the software’s nonfunctional
characteristics, such as performance, scalability, and stability,
by using both exploratory testing and long-running automated
tests.

Refer to Ref.2 pg.34

8.1.3 The XP Team – Testers Cont..

• When testers find bugs, they help the rest of the team figure
out what went wrong so that the team as a whole can prevent
those kinds of bugs from occurring in the future.

• require creative thinking, flexibility, and experience defining
test plans.

• XP automates repetitive testing rather than performing
manual regression testing

Refer to Ref.2 pg.34

8.1.3 The XP Team - Coaches
• XP leaders lead by example, helping the team reach its potential

rather than creating jobs and assigning tasks.
• XP leaders are called coaches.
• Leadership roles dynamically switch from person to person as

situations dictate.
• Help the team start their process by arranging for a shared

workspace and making sure that the team includes the right
people.

• They help set up conditions for energized work, and they assist
the team in creating an informative workspace.

Refer to Ref.2 pg.35

8.1.3 The XP Team – Coaches Cont…
• Work, and they assist the team in creating an informative

workspace.

• Help the team interact with the rest of the organization.

• Take responsibility for any reporting needed.

• Help the team members maintain their self-discipline, helping
them remain in control of challenging practices such as risk
management, test-driven development, slack, and
incremental design and architecture.

Refer to Ref.2 pg.35

8.1.3 The XP Team - Other Team Members
• Technical Writer
• Analyst
• Product Manager

– maintain and promote the product vision
– sharing it with stakeholders, incorporating feedback, generating

features and stories, setting priorities for release planning,
providing direction for the team’s on-site customers, reviewing
work in progress, leading iteration demos, involving real
customers, and dealing with organizational politics.

Refer to Ref.2 pg.36-37

8.1.3 The XP Team - Other Team Members
Cont…

• Domain Experts
– spend most of their time with the team, figuring out the details

of upcoming stories and standing ready to answer questions
when programmers ask.

– For complex rules, they create customer tests to help convey
nuances.

Refer to Ref.2 pg.36-37

8.1.3 The XP Team
• Interaction Designers

– focuses on understanding users, their needs, and how they
will interact with the product.

– They interview users, create user personas, review paper
prototypes with users, and observing usage of actual
software.

• Business Analysts
– clarify and refine customer needs,
– Help customers think of details they might otherwise forget

and help programmers express technical trade-offs in
business terms.

Graphic designers: convey ideas and moods via images and layout.
Interaction designers: focus on the types of people using the product,
their needs, and how the product can most seamlessly meet those
needs

Refer to Ref.2 pg.32-37

8.1.3 The XP Team Cont…
• Designers and architects

– Everybody codes and designs on an XP team.
– Guide the incremental design and architecture efforts and by

helping team members see ways of simplifying complex
designs.

– act as peers—guiding rather than dictating.

• Technical specialists
– XP programmers are generalizing specialists. Although each

person has his own area of expertise
– everybody is expected to work on any part of the system that

needs attention.

Refer to Ref.2 pg.32-37

8.1.3 The XP Team Cont…
• The programmer-coach

– helps the other programmers with XP’s technical practices.
– often senior developers and may have titles such as

“technical lead” or “architect.”
– programmer-coaches also act as normal programmers and

participate fully in software development.
• The project manager

– usually good at coaching non-programming practices.
– Some functional managers fit into this role as well.
– lack the technical expertise to coach XP’s programming

practices
– Project managers may also double as customers.

Refer to Ref.2 pg.32-37

8.1.3 The XP Team-The Project
Community
• Organization’s Human Resources and Facilities departments

• Human Resources : handles performance reviews and
compensation. Their mechanisms may not be compatible with
XP’s team-based effort

• In order to use XP, you’ll need the help of Facilities to create
an open workspace

Refer to Ref.2 pg.36

8.1.3 The XP Team - Filling Roles
• You don’t have to have one person for each role—some

people can fill multiple roles.
– At a minimum, however, one person clearly designated as

“product manager” (who may do other customer-y things) and
one person clearly defined as “programmer-coach” (who also
does programmer-y things).

– The other roles may blend together. Product managers are
usually domain experts and can often fill the project manager’s
shoes, too.

– One of the customers may be able to play the role of interaction
designer, possibly with the help of a UI programmer.

– On the programming side, many programmers are generalists
and understand a variety of technologies. In the absence of
testers, both programmers and customers should pick up the
slack.

Refer to Ref.2 pg.39

8.1.3 The XP Team - Team Size
• Assume teams with 4 to 10 programmers (5 to 20 total team

members).
• For new teams, four to six programmers is a good starting point.
• 6 programmers produces a team that also includes 4 customers, 1

tester, and a project manager, for a total team size of 12 people.
• Twelve people turns out to be a natural limit for team collaboration.
• XP teams can be as small as one experienced programmer and one

product manager,
• The smallest team with full XP consists of five people: four

programmers (one acting as coach)and one product manager (who also
acts as project manager, domain expert, and tester).

• Starting with 10 programmers produces a 20-person team that
includes 6 customers, 3 testers, and a project manager.

• You can create even larger XP teams, but they require special practices
Refer to Ref.2 pg.39

8.2: XP PRACTICES

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 45

8.2 XP Practices
• 8.2.1 Introduction
• 8.2.2 Pair Programming
• 8.2.3 Energized Work
• 8.2.4 Informative Workspace
• 8.2.5 Root-Cause Analysis
• 8.2.6 Retrospectives

8.2.1 Introduction
• XP doesn’t require experts. It does require a habit of

mindfulness.
• Five practices to help mindful developers excel:

– Pair programming doubles the brainpower available during
coding, and gives one person in each pair the opportunity to
think about strategic, long-term issues.

– Energized work acknowledges that developers do their best,
most productive work when they’re energized and motivated.

– An informative workspace gives the whole team more
opportunities to notice what’s working well and what isn’t.

– Root-cause analysis is a useful tool for identifying the underlying
causes of your problems.

– Retrospectives provide a way to analyze and improve the entire
development process.

Refer to Ref.2 pg.73-74

8.2.2 Pair Programming
IT4305 - Rapid Software Development

UCSC - 2015 48

8.2.2 Pair Programming Cont…
• When you pair, one person codes—the driver.
• The other person is the navigator, whose job is to think.
• You’ll spread coding knowledge and tips throughout the team.
• No interrupts from others when working with a partner

When you start working on a task, ask another programmer
to work with you. If another programmer asks for help, make
yourself available. Never assign partners: pairs are fluid,
forming naturally and shifting throughout the day. Over time,
pair with everyone on the team. This will improve team
cohesion and spread design skills and knowledge
throughout the team.

Refer to Ref.2 pg.74-78

8.2.2 Pair Programming Cont…
• It s a good idea to switch partners several times per day

even if you don’t feel stuck.

• When you sit down to pair together, make sure you’re
physically comfortable.

• The discussions may enlighten your partner as much as it
does you.

• As you pair, switch roles frequently.

Refer to Ref.2 pg.74-78

8.2.2 Pair Programming Cont…
• PAIRING TIPS

– Pair on everything you’ll need to maintain.
– Allow pairs to form fluidly rather than assigning partners.
– Switch partners when you need a fresh perspective.
– Avoid pairing with the same person for more than a day at

a time.
– Sit comfortably, side by side.
– Produce code through conversation. Collaborate, don’t

critique.
– Switch driver and navigator roles frequently.

8.2.2 Pair Programming Cont…
• Read following sub topics from Ref :2 (pg. 77 to 78)

– Paring Stations
– Challenges
– Comfort
– Mismatched Skills
– Communication Style
– Tools and Key Binding

• Read Ref :2 (pg. 81) for
– Alternatives

8.2.3 Energized Work
• Work only as many hours as you can be productive

and only as many hours you can sustain.

– Tired developers make more mistakes, which slows you
down more in the long run (remove value from product).

– If you mess with people’s personal lives (by taking it over),
in the long run the project will pay the consequences.

Refer to Ref.2 pg.82-84

8.2.4 Informative Workspace
• An informative workspace broadcasts information into the

room
• An informative workspace also allows people to sense the

state of the project just by walking into the room.
• The agile team project room often includes the story board

with
– user story cards
– movable from not started to in progress to done column
– release and/or iteration burn down charts
– the automated indicators showing the status of the latest

unit-testing run

Refer to Ref.2 pg.86-90

8.2.4 Informative Workspace Cont…
• Many teams find it useful to conduct the daily standups

meeting in front of their story board.

• It is also worth noting that even if the team is not co-located .

• It is still likely to find it useful to have a dedicated meeting.

• room with the big visible charts, whiteboards and flipcharts.

Refer to Ref.2 pg.86-90

8.2.4 Informative Workspace Cont…

8.2.4 Informative Workspace Cont…
• Read about the following Charts on Ref 2. pg 87-88

– Big Visible Charts
– Hand drawn Charts
– Process Improvement Charts

8.2.5 Root-Cause Analysis
• “We prevent mistakes by fixing our process.”
• Technique for identifying and eliminating process faults

– First developed in the nuclear power industry
– used in many fields.

– classic approach to root-cause analysis is to ask “why” five times.
– Why? Because the build is often broken in source control.
– Why? Because people check in code without running their tests.
– Why don’t they run tests before checking in? Because

sometimes the tests take longer to run than people have
available.

– Why do the tests take so long? Because tests spend a lot of time
in database setup and teardown.

– Why? Because our design makes it difficult to test business logic
without touching the database.

Refer to Ref 2: pg 92-93

8.2.6 Retrospectives

• “We continually improve our work habits.”
• Types of Retrospectives

– the iteration retrospective(most common
retrospective) : occurs at the end of every iteration.

• Intensive retrospectives at crucial milestones.
– release retrospectives
– project retrospectives
– surprise retrospectives (conducted when an

unexpected event changes your situation)

Refer to Ref.2 pg.94-100

8.2.6 Retrospectives Cont…
• How to Conduct an Iteration Retrospective

– Everyone on the team should participate
– The process

• Step 1: The Prime Directive
• Step 2: Brainstorming
• Step 3: Mute Mapping
• Step 4: Retrospective Objective

Ref 2: pg 95 – 97
• Retrospective

– sharing ideas gives the team a chance to grow closer,
– coming up with a specific solution gives the team a chance

to improve.

8.3: COLLABORATION IN XP

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 61

8.3 Collaboration in XP
8.3.1 Introduction
8.3.2 Trust
8.3.3 Sit Together
8.3.4 Real Customer Involvement

– 8.3.4.1 Contraindications
– 8.3.4.2 Alternatives

8.3.5 Ubiquitous Learning
8.3.6 Stand-up Meetings
8.3.7 Coding Standards
8.3.8 Iteration Demo
8.3.9 Reporting

8.3.1 Collaboration in XP - Introduction
• 8 practices to help your team and its stakeholders

collaborate efficiently and effectively:
– Trust
– Sitting together
– Real customer involvement
– A ubiquitous language
– Stand-up meetings
– Coding standards
– Iteration demos
– Reporting

Refer to Ref.2 pg.101-102

8.3.2 Collaboration in XP - Trust
• a series of group dynamics

– “Forming, Storming, Norming, and Performing”
• Trust is essential for the team to perform well.
• need to trust that taking time to help others

won’t make you look unproductive.
• need to trust that you’ll be treated with

respect when you ask for help or disagree with
someone.

• The organization needs to trust the team

Refer to Ref.2 pg.103

• strategies for generating trust in your XP team.
– Team Strategies

• Customer-Programmer Empathy
• Programmer-Tester Empathy
• Eat Together
• Team Continuity

– Organizational Strategies
• Show Some Hustle
• Deliver on Commitments
• Manage Problems
• Respect Customer Goals
• Promote the Team
• Be Honest

Refer to Ref 2: pg 101-109

8.3.3 Collaboration in XP – Sit Together
• Why?

– Accommodating Poor Communication
– A Better Way

• you need only turn your head and ask. You get an
instant response

• Exploiting Great Communication
– eliminates waste caused by waiting for an answer

• Secrets of Sitting Together
– Encourage interruptions

IT4305 - Rapid Software Development

UCSC - 2015 Refer to Ref 2: pg 113-117

• A sample workspace

IT4305 - Rapid Software Development

UCSC - 2015 Refer to Ref 2: pg 118-119

pairing stations,

a series of
cubbies for
personal effects.

Nonprogrammers
worked in
cubbies close to
the pairing
stations

• A small workspace

IT4305 - Rapid Software Development

UCSC - 2015 68Refer to Ref 2: pg 118-119

a table for meetings

charts and whiteboards
on dividers

a pod of half-cubicles
small conference
rooms

8.3.4 Collaboration in XP – Real
Customer Involvement
• Customer involvement is a key part of XP where the

customer is part of the development team.

• The role of the customer is:
• To help develop stories that define the requirements
• To help prioritize the features to be implemented in

each release
• To help develop acceptance tests which assess whether

or not the system meets its requirements.

IT4305 - Rapid Software Development

UCSC - 2015 69Refer to Ref 2: pg 121-124

8.3.4.1 Contraindications
– Danger of involving real customers is

• they won’t necessarily reflect the needs of all your customers.
• they don’t steer you toward creating software that’s only useful

for them.
• Customer desires inform the vision and may even change it, but

ultimately the product manager holds final responsibility for
product direction.

• End-users often think in terms of improving their existing way of
working

– If innovation is important to your project,
– give innovative thinkers such as a visionary product manager or

interaction designer, prominent role on your team.

IT4305 - Rapid Software Development

UCSC - 2015 70Refer to Ref 2: pg 125

– Real customer involvement is not crucial.
– In the absence of real customer involvement, be

sure to have a visionary product manager
– feedback from real customers is always

informative
– It’s especially useful when you’ve deployed

software to them; their reaction to working
software gives you valuable information about
how likely you are to reach the greatest levels of
success.

IT4305 - Rapid Software Development

UCSC - 2015 71Refer to Ref 2: pg 125

8.3.4.2 Alternatives

8.3.5 Collaboration in XP – Ubiquitous
Language
• Try describing the business logic in your current system

to a nonprogrammer domain expert.
– design your code to use the language of the domain

• name your classes, methods, and variables anything.
– programmers aren't necessarily experts in the areas for

which they write software.
– The people who are experts in the problem domain are

rarely qualified to write software.

IT4305 - Rapid Software Development

UCSC - 2015 72Refer to Ref 2: pg 125-129

8.3.6 Collaboration in XP – Stand-up
Meetings
• Goal: Identify items to be accomplished for

the day and raise issues
• Everyone attends,

• including the customer
• Not a discussion forum
• Take discussions offline
• Everyone gets to speak 15 minutes

IT4305 - Rapid Software Development

UCSC - 2015 73Refer to Ref 2: pg 130-133

IT4305 - Rapid Software Development

UCSC - 2015 74

8.3.7 Collaboration in XP – Coding
Standards

• Code must be formatted to agreed coding
standards.

• Coding standards keep the code consistent and
easy for the entire team to read and refactor.

• Code that looks the same encourages collective
ownership

IT4305 - Rapid Software Development

UCSC - 2015 75Refer to Ref 2: pg 133-138

8.3.7 Collaboration in XP – Iteration Demo
• Produce working software every week,
• demonstrate to stakeholders, Invite anyone who's interested to

the demo.
• take about ten minutes.
• The product manager often conducts the session.

• describe the features scheduled, their value, and any unexpected
changes. Build trust by being honest, not defensive, about changes.

• At the end of each demo, ask your executive sponsor two questions:
"Is our work to date satisfactory?" and "May we continue?“

• Conduct demos at the same place and time each week. When
schedule problems occur, a regular demo makes it easier to face
reality.

IT4305 - Rapid Software Development

UCSC - 2015 76Refer to Ref 2: pg 138-143

8.3.7 Collaboration in XP – Reporting
• A vision statement,

– weekly product demos, release and iteration plans, and a
burn-up chart are a normal byproduct of your work. Share
them as a matter of course.

• Other reports take extra time.
– They're technically waste, but may be necessary to help

build trust in your team.
• Roadmap and status emails summarize your release plan and

demos.
• Productivity, throughput, and defect reports help

management understand your effectiveness.

IT4305 - Rapid Software Development

UCSC - 2015 77Refer to Ref 2: pg 143-151

8.3.7 Collaboration in XP –
Reporting Cont…
• Time usage reports help explain your velocity.

• Avoid reporting lines of code, numbers of stories, and velocity.
They're misleading at best.

• Avoid sharing code quality metrics, too: they require expert
interpretation.

IT4305 - Rapid Software Development

UCSC - 2015 78Refer to Ref 2: pg 143-151

8.4: PRODUCT RELEASING IN XP

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 79

8.4: Product Releasing in XP
8.4.1 “Done Done”
8.4.2 No Bugs
8.4.3 Version Control
8.4.4 Ten Minute Build
8.4.5 Continuous Integration
8.4.6 Collective Code Ownership
8.4.7 Documentation

IT4305 - Rapid Software Development

UCSC - 2015 80

8.4.1 Product Releasing in XP –
“Done Done”

– A story is only complete when on-site customers can use it
as they intended.

– completed stories should be
• Tested , Coded , Designed, Integrated , Builds , Installs,

Migrates , Reviewed, Fixed
Accepted (customers agree that the story is finished)
• i.e. The build script builds, installs, and migrates data

for the story.
• Bugs have been identified and fixed and customers

have reviewed the story and agree it's complete.

IT4305 - Rapid Software Development

UCSC - 2015 81Refer to Ref 2: pg 155-159

– To achieve this result, make progress on everything each
day.

– Use test-driven development to combine testing, coding,
and design.

– Keep the build up to date and integrate continuously.
Demonstrate progress to your customers and incorporate
their feedback as you go.

IT4305 - Rapid Software Development

UCSC - 2015 82Refer to Ref 2: pg 155-159

8.4.1 Product Releasing in XP –
“Done Done” Cont…

8.4.2 Product Releasing in XP-No Bugs
• Rather than fixing bugs, agile methods strive to prevent them.

– Test-driven development structures work into easily-verifiable
steps.

– Pair programming provides instant peer review, enhances
brainpower, and maintains self-discipline.

– Energized work reduces silly mistakes. Coding standards and a
"done done" checklist catch common errors.

– On-site customers clarify requirements and discover
misunderstandings.

– Customer tests communicate complicated domain rules.
Iteration demos allow stakeholders to correct the team's course.

IT4305 - Rapid Software Development

UCSC - 2015 83Refer to Ref 2: pg 159-168

8.4.2 Product Releasing in XP-No Bugs
Cont…

• Simple design, refactoring, slack, collective code ownership,
and fixing bugs early eliminates bug breeding grounds.

• Exploratory testing discovers teams' blind spots, and root-
cause analysis allows teams to eliminate them.

IT4305 - Rapid Software Development

UCSC - 2015 84Refer to Ref 2: pg 159-168

8.4.3 Product Releasing in XP-Version
Control
• To support collective ownership, use a concurrent model of

version control.
– Support time travel by storing tools, libraries, documentation, and

everything else related to the project in version control.
– Keep the entire project in a single repository.
– Avoid long-lived branches, particularly for customized versions; they'll

cripple your ability to deliver on a timely schedule.
• Instead, use configuration files and build scripts to support multiple configurations.

• Keep your repository clean: never check in broken code. All
versions should build and pass all tests.

• "Iteration" versions are ready for stakeholders;
• "release" versions are production-ready.

IT4305 - Rapid Software Development

UCSC - 2015 85Refer to Ref 2: pg 169-177

8.4.4 Product Releasing in XP-Ten-
Minute Build
• Build, test, and deploy your entire product at any time with the

push of a button.
• Your build should be comprehensive but not complex.

– Make it compile source code, run tests, configure registry settings,
initialize database schemas, set up web servers, launch processes, build
installers, and deploy.

– Your IDE won't do all this, so learn to use a dedicated build tool.
– Make sure your build works when disconnected from the network, too.

• Builds should be fast. If not, look at your tests.
• End-to-end integration tests are the typical culprit. Replace them

with faster, more maintainable unit tests.

IT4305 - Rapid Software Development

UCSC - 2015 86Refer to Ref 2: pg 177-183

8.4.5 Product Releasing in XP-
Continuous Integration
• Keep code integrated and build release infrastructure with the

rest of the application.
– The ultimate goal is to be able to deploy all but the last few hours of work

at any time.

• Integrate every few hours and keep your build, test, and other
release infrastructure up to date.
– Each integration should get as close to a real release as possible.

• Prefer synchronous integration, in which you wait for the
integration to succeed, to asynchronous integration, in which a
tool tests the integration for you.
– Synchronous integration requires fast builds, but ensures that they never

break.

IT4305 - Rapid Software Development

UCSC - 2015 87Refer to Ref 2: pg 183--191

8.4.6 Product Releasing in XP-
Collective Code Ownership
• With collective code ownership, everyone shares responsibility

for code quality.
• Anyone can make necessary changes anywhere, and everyone is

expected to fix problems they find.
• Take as much pride in the team's code as in your own code.
• When working with unfamiliar code, ask the local expert to pair

with you.
– If he's unavailable, infer high-level class responsibilities and method

behaviors from their names, and rely on unit tests for further
documentation and as your safety net.

• As you work, help the next person by taking opportunities to
refactor.

IT4305 - Rapid Software Development

UCSC - 2015 88Refer to Ref 2: pg 191-195

8.4.6 Product Releasing in XP-
Documentation
• Projects use three main types of documents:

– work-in-progress; product; hand-off.

• Work-in-progress documents
– communicate, and other forms of communication may

replace them. High-bandwidth communication replaces
some of these documents

– Test-driven development creates executable low-level design
specifications. Customer tests describe high-level behavior,
and a ubiquitous language further clarifies intent.

IT4305 - Rapid Software Development

UCSC - 2015 89Refer to Ref 2: pg 195--198

8.4.6 Product Releasing in XP-
Documentation Cont…
• Product documents have business value

– schedule them with stories.

• Handoff documents
– Best and most accurate at the end of the project.
– Set aside time after delivery to create them
– consider conducting an incremental handoff using pair

programming and collective ownership.

IT4305 - Rapid Software Development

UCSC - 2015 90Refer to Ref 2: pg 195--198

8.5: PLANNING PROCESS IN XP

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 91

8.5: Planning Process in XP
8.5.1 Introduction
8.5.2 Vision
8.5.3 Release Planning
8.5.4 Planning Game
8.5.5 Risk Management
8.5.6 Iteration Planning
8.5.7 Slack
8.5.8 Stories
8.5.9 Estimating

IT4305 - Rapid Software Development

UCSC - 2015 92

8.5.1 Planning Process in XP-
Introduction
• Vision reveals where the project is going and why it's going there.
• Release Planning provides a roadmap for reaching your

destination.
• The Planning Game combines the expertise of the whole team to

create achievable plans.
• Risk Management allows the team to make and meet long-term

commitments.
• Iteration Planning provides structure to the team's daily activities.
• Slack allows the team to reliably deliver results every iteration.
• Stories form the line items in the team's plan.
• Estimating enables the team to predict how long their work will

take.
• 0

IT4305 - Rapid Software Development

UCSC - 2015 93Refer to Ref 2: pg 201

8.5.2 Planning Process in XP-Vision
• Every project needs a single vision

– the product manager must unify, communicate, and promote that vision.

• Distance between visionaries and the product manager increases
error and waste.
– If you only have one visionary, the best approach is for him to be product

manager. Alternatively, use the visionary's protogé.

• Some projects have multiple visionaries. They need to combine
their ideas into a unified vision. The product manager facilitates
discussion and consensus.

• Document the vision with what success is, why it's important,
and how you know you've achieved it. Post it prominently and
involve your visionaries in planning and demos.

IT4305 - Rapid Software Development

UCSC - 2015 94Refer to Ref 2: pg 202-207

8.5.3 Planning Process in XP-Release
Planning
• Maximize your return on investment by:

– working on one project at a time;
– releasing early and often;
– adapting your plans;
– keeping your options open; and
– planning at the last responsible moment.

• Use timeboxing to control your schedule. Set the release date,
then manage scope to meet that date. This forces important
prioritization decisions and makes the endpoint clear.

IT4305 - Rapid Software Development

UCSC - 2015 95Refer to Ref 2: pg 207-220

8.5.3 Planning Process in XP-Release
Planning Cont…
• Prioritized Minimum Marketable Features (MMFs) and stories

form the body of your plan. Demonstrate your progress as you
develop and use that feedback to revise your plan.

• To minimize rework, develop the details of your requirements
at the last responsible moment.

IT4305 - Rapid Software Development

UCSC - 2015 96Refer to Ref 2: pg 207-220

8.5.4 Planning Process in XP-The
Planning Game
• Customers have the most information about value:

– what best serves the organization.
– Programmers have the most information about cost: what it

takes to implement and maintain those features
– every decision to do something is a decision to not

do something else.

• The planning game brings together customers and
programmers so that they may maximize value while minimizing
costs.

IT4305 - Rapid Software Development

UCSC - 2015 97Refer to Ref 2: pg 221-225

8.5.4 Planning Process in XP-The
Planning Game Cont…
• Anybody may create stories. Programmers estimate the stories,

and customers prioritize them. Programmers and customers
may question each others' decisions, but each group has final
say over its area of expertise.

• The end result is a single prioritized list.

IT4305 - Rapid Software Development

UCSC - 2015 98Refer to Ref 2: pg 221-225

8.5.5 Planning Process in XP- Risk
Management
• Risk management allows you to make and meet

commitments.

• Manage common risks with risk multipliers.
– Manage project-specific risks by brainstorming disasters and

their causes.
– Create mitigation and contingency plans for serious risks

and define unambiguous triggers for taking action.

IT4305 - Rapid Software Development

UCSC - 2015 99Refer to Ref 2: pg 226-234

8.5.5 Planning Process in XP- Risk
Management Cont…
• Combine risk multipliers with project-specific risks to

project your chances of meeting commitments, and
report those probabilities as "commitments" and
"stretch goals."
– Lower your risk and improve projections by including

slack in every iteration and getting stories "done done".
• Remember that success is more than meeting

commitments. Sometimes it's better to delay delivery
and create a better product.

IT4305 - Rapid Software Development

UCSC - 2015 100Refer to Ref 2: pg 226-234

8.5.5 Planning Process in XP- Iteration
Planning
• Iterations are timeboxed to one week and follow a strict

schedule:
– Plan iteration
– Commit to delivering stories
– Develop stories
– Prepare release
– Demonstrate release
– Hold retrospective

• To plan, measure the velocity of the previous iteration (total
the estimates of "done done" stories). Select stories from the
release plan that match the velocity. It shouldn't take long.

IT4305 - Rapid Software Development

UCSC - 2015 101Refer to Ref 2: pg 234-246

8.5.5 Planning Process in XP- Iteration
Planning Cont…
• Assuming programmers are your constraint, they brainstorm

and estimate engineering tasks. Ask the on-site customer
about detailed requirements when necessary. Compare the
task estimates to last iteration's to confirm the plan's
feasibility.

• Post the stories and tasks prominently and mark them when
complete.

IT4305 - Rapid Software Development

UCSC - 2015 102Refer to Ref 2: pg 234-246

8.5.5 Planning Process in XP- Risk
Management

• Risk management allows you to make and meet
commitments.

• Manage common risks with risk multipliers.
– Manage project-specific risks by brainstorming disasters and

their causes.
– Create mitigation and contingency plans for serious risks and

define unambiguous triggers for taking action.
• Combine risk multipliers with project-specific risks to project

your chances of meeting commitments, and report those
probabilities as "commitments" and "stretch goals."
– Lower your risk and improve projections by including slack in

every iteration and getting stories "done done".

IT4305 - Rapid Software Development

UCSC - 2015 103Refer to Ref 2: pg 226-234

8.5.5 Planning Process in XP- Risk
Management Cont…

• Remember that success is more than meeting
commitments. Sometimes it's better to delay
delivery and create a better product.

IT4305 - Rapid Software Development

UCSC - 2015 104Refer to Ref 2: pg 226-234

8.5.6 Planning Process in XP- Slack
• deliver on our iteration commitments.
• project plans are also too important to be disrupted by the

slightest provocation.
• schedule no work on the last day or two of your iteration.
• useful, important work that isn't time-critical—work you can

set aside in case of an emergency.
– useful, important work that isn't time-critical—work you can set aside

in case of an emergency. Paying down technical debt fits the bill
perfectly.

• Each refactoring should address a specific, relatively small
problem. Sometimes you'll fix only part of a larger problem—
that's okay as long as it makes the code better.

IT4305 - Rapid Software Development

UCSC - 2015 105Refer to Ref 2: pg 247-253

8.5.7 Planning Process in XP- Stories
• Stories may be the most misunderstood entity in all of XP.

They're not requirements. They're not use cases.
• Stories are for planning
• A story is a placeholder for a detailed discussion about

requirements.
• two important characteristics

– Stories represent customer value and are written in the
customers' terminology. They describe an end-result that the
customer values, not implementation details.

– Stories have clear completion criteria. Customers can describe
an objective test that would allow programmers to tell when
they've successfully implemented the story.

IT4305 - Rapid Software Development

UCSC - 2015 106Refer to Ref 2: pg 255-261

8.5.7 Planning Process in XP- Stories
Cont…
• Story Cards : Write stories on index cards.
• Customer-Centricity :Write them from the on-site customers'

point of view
• Splitting and Combining Stories : Split large stories; combine

small ones.
• Special Stories : Documentation Stories, "Non-Functional"

Stories, Bug Stories, Spike Stories

IT4305 - Rapid Software Development

UCSC - 2015 107Refer to Ref 2: pg 255-261

8.5.7 Planning Process in XP- Estimating
• provide reliable estimates.
• consider estimating to be a black art

With no history, the first plan is the hardest and least accurate
(fortunately, you only have to do it once)

How to start estimating:
– Begin with the stories that you feel the most comfortable estimating.
– Intuitively imagine how long it will take you.
– Base other estimates on the comparison with those first stories.

Spike Solutions:
– Do a quick implementation of the whole story.
– Do not look for the perfect solution!
– Just try to find out how long something takes

IT4305 - Rapid Software Development

UCSC - 2015 108Refer to Ref 2: pg 261-272

Keys to effective story estimation:
• Keep it simple
• Use what happened in the past (“Yesterday’s weather”)
• Learn from experience

Comparative story estimation:
• One story is often an elaboration of a closely related one
• Look for stories that have already been implemented
• Compare difficulties, not implementation time

– “twice as difficult”, “half as difficult”
• Discuss estimates in the team. Try to find an agreement.
• “Optimism wins”: Choose the more optimistic of two

disagreeing estimates.

IT4305 - Rapid Software Development

UCSC - 2015 109Refer to Ref 2: pg 261-272

8.6: PRODUCT DEVELOPMENT IN XP

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 110

8.6: Product Development in XP
8.6.1 Introduction
8.6.2 Incremental Requirements
8.6.3 Customer Tests
8.6.4 Test-Driven Development
8.6.5 Refactoring
8.6.6 Simple Design
8.6.7 Incremental Design and Architecture
8.6.8 Spike Solutions
8.6.9 Performance Optimization

IT4305 - Rapid Software Development

UCSC - 2015 111

8.6.1 Product Development in XP -
Introduction

• Incremental Requirements allow the team to get started
while customers work out requirements details.

• Customer Tests help communicate tricky domain rules.
• Test-Driven Development allows programmers to be

confident that their code does what they think it should.
• Refactoring enables programmers to improve code quality

without changing its behavior.
• Simple Design allows the design to change to support any

feature request, no matter how surprising.

IT4305 - Rapid Software Development

UCSC - 2015 112Refer to Ref 2: pg 273

8.6.1 Product Development in XP –
Introduction Cont…

• Incremental Design and Architecture allows programmers to
work on features in parallel with technical infrastructure.

• Spike Solutions use controlled experiments to provide
information.

• Performance Optimization uses hard data to drive
optimization efforts.

• Exploratory Testing enables testers to identify gaps in the
team's thought processes.

IT4305 - Rapid Software Development

UCSC - 2015 113Refer to Ref 2: pg 273

8.6.2 Product Development in XP -
Incremental Requirements
• We define requirements in parallel with other work.
• XP doesn't have a requirements phase
• The Living Requirements Document

– the on-site customers sit with the team. They're expected to have all of
the information about requirements at their fingertips.

• Work Incrementally
– Work on requirements incrementally, in parallel with the rest of the

team's work.

• Vision, Features, and Stories
– Start by clarifying your project vision, then identify features and stories as

described in 8.5
• Rough Expectations, Mock-Ups, Customer Tests, and Completion Criteria,

Customer Review

IT4305 - Rapid Software Development

UCSC - 2015 114Refer to Ref 2: pg 275-277

– Many changes will be minor and the programmers
will be able to fix them as part of their iteration
slack.

– If there are major changes, however, the
programmers may not have time to fix them in the
current iteration.

• Create story cards for these changes. Before scheduling
such a story into your release plan, consider whether
the value of the change is worth its cost.

IT4305 - Rapid Software Development

UCSC - 2015 115Refer to Ref 2: pg 277

8.6.3 Product Development in XP –
Customer Tests
• make sure that the programmers understand the domain rules

well enough to code them properly in the application.Customer
tests help customers communicate their expertise.

• Describe
– At the beginning of the iteration, look at your stories and decide

whether there are any aspects that programmers might
misunderstand.

• Demonstrate
– Tables are often the most natural way to describe this information,

but you don't need to worry about formatting. Just get the
examples on the whiteboard.

IT4305 - Rapid Software Development

UCSC - 2015 116Refer to Ref 2: pg 280-287

8.6.3 Product Development in XP –
Customer Tests Cont…

• Develop
– When you've covered enough ground, document your

discussion so the programmers can start working on
implementing your rules.

• One of the most common mistakes in creating customer tests
is describing what happens in the user interface rather than
providing examples of business rules.

IT4305 - Rapid Software Development

UCSC - 2015 117Refer to Ref 2: pg 280-287

8.6.4 Product Development in XP –
Test Driven Development

• produce well-designed, well-tested, and well-factored
code in small, verifiable steps.

• TDD, is a rapid cycle of testing, coding, and refactoring.
• When adding a feature, a pair may perform dozens of these

cycles, implementing and refining the software in baby steps
until there is nothing left to add and nothing left to take away.

• When used properly, it also helps improve your design,
documents your public interfaces, and guards against future
mistakes.

IT4305 - Rapid Software Development

UCSC - 2015 118Refer to Ref 2: pg 287-305

8.6.4 Product Development in XP –
Test Driven Development Cont…

• TDD isn't perfect, of course. TDD is difficult to use on legacy
codebases.

• Go through
– Why TDD Works, How to Use TDD
– Unit Tests
– Focused Integration Tests
– End-to-End Tests
– TDD and Legacy Code

IT4305 - Rapid Software Development

UCSC - 2015 119Refer to Ref 2: pg 287-305

8.6.5 Product Development in XP -
Refactoring

• the process of changing the design of your code
without changing its behavior

• also reversible; sometimes one form is better than
another for certain cases.

• Go thro’
– Reflective Design
– Analyzing Existing Code
– How to Refactor
– Refactoring in Action

IT4305 - Rapid Software Development

UCSC - 2015 120Refer to Ref 2: pg 306-316

8.6.6 Product Development in XP –
Simple Design

• easy to modify and maintain Design.
• A simple design is clean and elegant, not something you

throw together with the least thought possible.
– some points to keep in mind as you strive for simplicity:

(Go thro’ them)
• You Aren't Gonna Need It (YAGNI)
• Once and Only Once
• Self-Documenting Code
• Isolate Third-Party Components
• Limit Published Interfaces
• Fail Fast

IT4305 - Rapid Software Development

UCSC - 2015 121Refer to Ref 2: pg 316-323

8.6.7 Product Development in XP -
Incremental Design and Architecture

• every week, programmers should finish four to ten customer-valued stories.
• Every week, customers may revise the current plan and introduce entirely

new stories—with no advance notice. This regimen starts with the first week
of the project.

• How it works
• start by creating the simplest design that could possibly work
• incrementally add to it as the needs of the software evolve
• continuously improve the design by reflecting on its strengths and

weaknesses.
• Continuous Design

– Breakthroughs happen at all levels

of the design, from methods to architectures.

IT4305 - Rapid Software Development

UCSC - 2015 122Refer to Ref 2: pg 323-333

8.6.8 Product Development in XP –
Spike Solutions

• a technical investigation
• It's a small experiment to research the answer to a problem.
• usually to create a small program or test that demonstrates

the feature in question.
• Scheduling

– are performed on the spur of the moment. You see a need to
clarify a small technical issue, and you write a quick spike to do
so.

– are performed on the spur of the moment. You see a need to
clarify a small technical issue, and you write a quick spike to do
so.

IT4305 - Rapid Software Development

UCSC - 2015 123Refer to Ref 2: pg 336-339

8.6.9 Product Development in XP –
Performance Optimization

– Measure the performance of the entire system, make an
educated guess about what to change, then re-measure. If
the performance gets better, keep the change. If it doesn’t,
discard it. Once your performance test passes, stop—you’re
done.

• How to Optimize
• run your test suite one more time. Then integrate. If you’re

adding new code, such as a cache, use test-driven development
to create that code. If you’re removing or refactoring code, you
may not need any new tests, but be sure to run your test suite
after each change.

IT4305 - Rapid Software Development

UCSC - 2015 124Refer to Ref 2: pg 333-336

8.6.9 Product Development in XP –
Performance Optimization cont…
• When to Optimize

– two major drawbacks : often leads to complex, buggy code, and it
takes time away from delivering features

• If your tests start to take too long, go ahead and optimize until
you meet a concrete goal, such as five or ten minutes. Keep in
mind that the most common cause of a slow build is too much
emphasis on end-to-end tests, not slow code.

IT4305 - Rapid Software Development

UCSC - 2015 125Refer to Ref 2: pg 333-336

