
IT4305: Rapid Software
Development

BIT – 2nd Year

Semester 4

IT4305 - Rapid Software Development

UCSC - 2015 2

References
1. Essential Scrum Practical Guide to the Most Popular

Agile Process by Kenneth S. Rubin.

2. The Art of Agile Development by James Shore and
Shane Warden

3. Agile and Iterative Development: A Manager's Guide by
Craig Larman, Agile Software development series,
Alistair Cockburn and Jim Highsmith, Series Editors

4. http://agilemanifesto.org

5. https://msdn.microsoft.com/en-
us/library/hh533841.aspx

IT4305 - Rapid Software Development

UCSC - 2015 3

IT4305: Rapid Software Development

Introduction to Agile Software
Development

Duration: 01 hours

IT4305 - Rapid Software Development

UCSC - 2015 4

Learning Objectives

• Identify the significance of meeting deadline
for organizational success.

• Explain how Agility becomes a successful way

• Understand the Principals behind the Agile
Manifesto

Detailed Syllabus

1.1 Rational of Agile

1.2 How to use Agile

1.3 Agile Manifesto

1.4 Scrum, Lean, Kanban, Extreme Programming

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 5

1.1 RATIONAL OF AGILE

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 6

THE PROBLEM….

http://www.3ca.com.au/stopping-ambiguous-requirements/

Here is a Worrying Stat…

An average of 70% software development

projects fail!!
Reasons for FAILURE?

Not meeting the timelines

Costs overrun

Customers have NOT got what they asked for

http://www.zdnet.com/article/study-68-percent-of-it-projects-fail/

Missing the target

www.sci.sjp.ac.lk/lms/mod/resource/view.php?id=928

Agility

• In general, agility is defined as "the ability to
both create and respond to change in order to
profit in a turbulent environment “

• Changes in Requirements

• Changes in Design, Implementation

• Changes in Technology

• Changes in Team

• Changes in users/client contacts

http://www.informit.com/articles/article.aspx?p=25980

What is agile?
• Philosophy + a set of Guidelines for software development

• P:

 customer satisfaction

 early incremental delivery

 small, highly motivated project teams

 overall development simplicity

• G:

 active continuous communication & collaboration between
developers and users

So why AGILE?
Customer satisfaction by rapid delivery of useful

software
Welcome changing requirements, even late in

development
Working software is delivered frequently (weeks rather

than months)
Working software is the principal measure of progress
Close, daily co-operation between business people and

developers
Face-to-face conversation is the best form of

communication (co-location)

So why AGILE? CONT…

Projects are built around motivated individuals, who
should be trusted

Continuous attention to technical excellence and good
design

Simplicity

Self-organizing teams

Regular adaptation to changing circumstances

http://www.agilenutshell.com/how_is_it_different

AGILE PRINCIPLES – in a nutshell

Eliminate Waste

Build Quality In

Deliver Fast

Improve the system

Defer Commitment

Respect People

Create Knowledge

Evolution of Agile
SCRUM – Jeff Sutherland, Ken Schwaber
Xbreed - Mike Beedle
DSDM - Arie van Bennekum
XP – Kent Beck, Ward Cunningham, Ron Jeffries ,

Robert C. Martin
Martin Fowler (Thoughtworks)
FDD – Peter Coad, Jon Kern
Testing - Brian Marick
Adaptive Software development – Jim Highsmith
Crystal Family – Alistair Cockburn
Pragmatic programmers - Andrew Hunt , Dave Thomas

• Agile Methods
– The Agile movement proposes alternatives to traditional

project management.

“A method, or process, is a way of working.
Whenever you do something, you’re following a process.”

– Agile methods are processes that support agile
philosophy

Ex: Extreme Programming
Scrum

– Agile methods consist of individual elements called
practices

Refer to the Ref.2 pg.9

Agile practices

• Practices include using

– version control,

– setting coding standard

– giving weekly demos to your stakeholders

Agile practices often perform double- and triple-duty,

solving multiple software development problems
simultaneously and supporting each other in clever
and surprising ways.

Refer to the Ref.2 pg.9

Agile development

• Agile development focuses on achieving ,

– Personal successes

– Technical successes

– organizational successes

Refer to the Ref.2 pg. 5

The importance of “Three types of
Success”

• Without personal success

– troubles motivating yourself and employees.

• Without technical success

– source code will eventually collapse under its
own weight.

• Without organizational success

– team may find that they’re no longer wanted
in the company.

Refer to the Ref.2 pg. 5

Organizational Value and Agile

• Aside from revenue and cost savings, sources
of value include:

– Competitive differentiation

– Brand projection

– Enhanced customer loyalty

– Satisfying regulatory requirements

– Original research

– Strategic information

Refer to the Ref.2 pg. 5-6

Organizational Value and Agile
• Organizational successes by focusing on delivering value and

decreasing costs
• Agile methods set expectations early in the project

– if your project won’t be an organizational success, you’ll find out early
enough to cancel it before your organization has spent much money.

• Agile teams increase value by
– including business experts and by focusing development efforts on the

core value

• Agile Projects release their most valuable features first and release
new versions frequently

• When business needs change or when new information is
discovered, agile teams change direction to match.

• An experienced agile team will actually seek out unexpected
opportunities to improve its plans.

Refer to the Ref.2 pg. 5-6

Organizational Value and Agile Contd.

• Decreasing Cost by

– cancelling bad projects early and replacing
expensive development practices with simpler
ones.

– communicating quickly and accurately, and make
progress even when key individuals are
unavailable

– regularly reviewing the process and continually
improving the code

– making the software easier to maintain and
enhance over time Refer to the Ref.2 pg. 5-6

Technical Success
• Ex. Extreme Programming achieving technical

successes
– XP programmers work together, which helps them

keep track of the nitpicky details

– At least two people review every piece of code.

– Programmers continuously integrate their code

– The whole team focuses on finishing each feature
completely before starting the next

– Create simple, ever-evolving designs that are easy
to modify when plans change

Refer to the Ref.2 pg. 7

Personal Success and Agile
• Agile once adopted will directly / indirectly translate these

results to you and your team
– Testers – Involvement and influence quality at every phase of

s/w development
– Developers - Increased technical quality / Greater influence on

estimates and schedules / greater autonomy
– Product / Project Manager – Greater ability to change direction

as client requirement changes /team’s ability to deliver / Better
stakeholder satisfaction

– Architect / Domain – product experts - Greater ability to
influence development / team’s ability to deliver better results

– Executive / Senior Management – Appreciation of team’s focus
for higher ROI and enhancement to business and services /
product.

Refer to the Ref.2 pg. 7

1.2 HOW TO USE AGILE

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 26

• Every project and situation is unique

• It is better to have an agile method that is
customized to the situation

• Rather than making an agile method from
scratch, start with an existing, proven method
and iteratively refine it

Steps to follow in order To master agile
development

• Decide why you want to use agile
development

• Adopt as many of XP’s practices as you can

• Follow the XP practices rigorously and
consistently

• Start experimenting with changes

• Each time you make a change, observe what
happens and make further improvements

Refer to the Ref.2 pg. 12

1.3 AGILE MANIFESTO

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 29

Origin of Agile Manifesto

• Authored at a ski lodge in Utah in 2001

• the original signees of the Agile Manifesto
believed were the core to good software
development

• seventeen people met to talk, ski, relax, and
try to find common ground and of course, to
eat.

• What emerged was the Agile Software
Development Manifesto.

IT4305 - Rapid Software Development

Refer to : http://agilemanifesto.org/history.html

Significance of Agile Manifesto

• Not tangible artifacts such as templates,
instructions, rules or procedures, but values

• Agile is not complex in it's beliefs.

• The most difficult aspect of the Agile approach
is to trust in it and believe that it will work.

• It will only work if it is applied consistently and
completely.

IT4305 - Rapid Software Development

UCSC - 2015 31

“We are uncovering better ways of developing software
by doing it and helping others do it”

• Individuals and interactions over processes and tools

• Working software over comprehensive
documentation

• Customer collaboration over contract Negotiation

• Responding to change over following a plan

Agile manifesto

Refer to the Ref.2 pg. 10

Principles behind the agile manifesto
• Our highest priority is to satisfy the

customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

• Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the
shorter timescale.

• Business people and developers must
work together daily throughout the
project.

• Build projects around motivated
individuals. Give them the environment
and support they need, and trust them
to get the job done.

• The most efficient and effective
method of conveying information to
and within a development team is face-
to-face conversation.

• Working software is the primary
measure of progress.

• Agile processes promote sustainable
development. The sponsors,
developers, and users should be able to
maintain a constant pace indefinitely.

• Continuous attention to technical
excellence and good design enhances
agility.

• Simplicity--the art of maximizing the
amount of work not done--is essential.

• The best architectures, requirements,
and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior
accordingly.

Refer to the Ref.2 pg. 11

1.4 SCRUM, LEAN, KANBAN,
EXTREME PROGRAMMING

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 34

Agile

Crystal

XPScrum
DSDM

FDD

Kanban RUP

and few more…

Origin of Scrum
• Jeff Sutherland and Ken Schwaber conceived the Scrum

process in the early 90’s.

• They codified Scrum in 1995 and published the paper
“SCRUM Software Development Process”.

• Inherited the name ‘Scrum’ from the 1986 groundbreaking
paper ‘The New New Product Development Game’ by
Takeuchi and Nonaka, two acknowledged management
thinkers.

• With the term ‘Scrum’ Nonaka and Takeuchi referred to the
game of rugby to stress the importance of teams and some
analogies between a team sport like rugby and being
successful in the game of new product development.

IT4305 - Rapid Software Development

UCSC 2015Refer to http://www.scrumguides.org/history.html

Scrum in a nutshell

For more information Refer to Section 3

Origin of Lean
• The term Lean Software Development was first coined in

October 1992.

• Robert “Bob” Charette in 1993 suggested the concept of
“Lean Software Development” as part of his work exploring
better ways of managing risk in software projects.

• The term “Lean” dates to 1991, suggested by James Womack,
Daniel Jones, and Daniel Roos, in their book The Machine That
Changed the World: The Story of Lean Production as the
English language term to describe the management approach
used at Toyota.

• The idea that Lean might be applicable in software
development was established after the term was used in in
manufacturing processes and industrial engineering.

IT4305 - Rapid Software Development

UCSC - 2015 38
https://msdn.microsoft.com/en-us/library/hh533841.aspx

Lean
• Five core pillars of Lean Thinking

– Value

– Value Stream

– Flow

– Pull

– Perfection

• If a SDLC or a project management process was
observed to be aligned with the values of the Lean
Software Development movement and the principles
of Lean Software Development, it is lean.

Refer to URL 2

Lean Values

• Accept the human condition
– Successful processes will be those that embrace and accommodate the

human condition rather than those that try to deny it and assume logical,
machine-like behavior.

• Accept that complexity & uncertainty are natural to knowledge work
– The behavior of customers and markets are unpredictable. The flow of

work through a process and a collection of workers is unpredictable.
Defects and required rework are unpredictable.

• Work towards a better Economic Outcome
– Employees and workers deserve a fair rate of pay for a fair effort in

performing the work.

• Enable a better Sociological Outcome
– Creating a workplace that respects people by accepting the human

condition and provides systems of work that respect the psychological and
sociological nature of people is essential.

• Seek, embrace & question ideas from a wide range of disciplines
• A values-based community enhances the speed & depth of positive

change

Refer to URL 2

The 7 Principles of Lean
• Eliminate Waste

• Amplify Learning

• Decide as Late as Possible

• Deliver as Fast as Possible

• Empower the Team

• Build Integrity In

• See the Whole

Refer to URL 2

Origin of Kanban
• A kanban system is a practice adopted from Lean

manufacturing.

• It uses a system of physical cards to limit the quantity of work-
in-progress at any given stage in the workflow.

• A scheduling system for lean and just-in-time (JIT) production.

• Kanban is a system to control the logistical chain from a
production point of view, and is not an inventory control
system. Kanban was developed by Taiichi Ohno, at Toyota, as a
system to improve and maintain a high level of production.
Kanban is one method to achieve JIT.

IT4305 - Rapid Software Development

Refer to https://msdn.microsoft.com/en-us/library/hh533841.aspx

Kanban
• Lean approach to agile development
• Aim is to eliminate ‘waste’ wherever possible
3 basic principles

– Start with what you do now
Kanban does not prescribe a specific set of roles or process
steps
– Agree to pursue incremental, evolutionary change
continuous small changes that stick vs. sweeping changes
that fail due to resistance and fear in the organization
– Respect the current process, roles, responsibilities &

titles
gain support, reduce fear/resistance to change and
experience the benefits as a team

Refer to URL 2

Kanban - 5 Core Properties

1. Visualize the workflow
Kanban literally means "signboard" or "billboard"

2. Limit Work In Process (WIP)
use a pull system - establish and respect your ideal capacity

3. Manage Flow
monitor, measure and report the flow of work through each state

4. Make Process Policies Explicit
describe the process accurately in order to improve it

5. Improve Collaboratively
using models & the scientific method (empirical) to implement
continuous, incremental and evolutionary changes

Refer to URL 2

Extreme Programming
• Improve software quality and

responsiveness to changing customer
requirements

• Frequent releases in short development
cycles

• Improve productivity and regular
checkpoints with the customer

• Paired programming

For more information Refer to the Section 8

